Multiple kinesin motors coordinate cytoplasmic RNA transport on a subpopulation of microtubules in Xenopus oocytes.
نویسندگان
چکیده
RNA localization is a widely conserved mechanism for generating cellular asymmetry. In Xenopus oocytes, microtubule-dependent transport of RNAs to the vegetal cortex underlies germ layer patterning. Although kinesin motors have been implicated in this process, the apparent polarity of the microtubule cytoskeleton has pointed instead to roles for minus-end-directed motors. To resolve this issue, we have analyzed participation of kinesin motors in vegetal RNA transport and identified a direct role for Xenopus kinesin-1. Moreover, in vivo interference and biochemical experiments reveal a key function for multiple motors, specifically kinesin-1 and kinesin-2, and suggest that these motors may interact during transport. Critically, we have discovered a subpopulation of microtubules with plus ends at the vegetal cortex, supporting roles for these kinesin motors in vegetal RNA transport. These results provide a new mechanistic basis for understanding directed RNA transport within the cytoplasm.
منابع مشابه
Dynein, Dynactin, and Kinesin II's Interaction with Microtubules Is Regulated during Bidirectional Organelle Transport
The microtubule motors, cytoplasmic dynein and kinesin II, drive pigmented organelles in opposite directions in Xenopus melanophores, but the mechanism by which these or other motors are regulated to control the direction of organelle transport has not been previously elucidated. We find that cytoplasmic dynein, dynactin, and kinesin II remain on pigment granules during aggregation and dispersi...
متن کاملKinesin II Mediates Vg1 mRNA Transport in Xenopus Oocytes
The subcellular localization of specific mRNAs is a widespread mechanism for regulating gene expression. In Xenopus oocytes microtubules are required for localization of Vg1 mRNA to the vegetal cortex during the late RNA localization pathway. The factors that mediate microtubule-based RNA transport during the late pathway have been elusive. Here we show that heterotrimeric kinesin II becomes en...
متن کاملPolar Transport in the Drosophila Oocyte Requires Dynein and Kinesin I Cooperation
BACKGROUND The cytoskeleton and associated motors play an important role in the establishment of intracellular polarity. Microtubule-based transport is required in many cell types for the asymmetric localization of mRNAs and organelles. A striking example is the Drosophila oocyte, where microtubule-dependent processes govern the asymmetric positioning of the nucleus and the localization to dist...
متن کاملDynactin is required for bidirectional organelle transport
Kinesin II is a heterotrimeric plus end-directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a mo...
متن کاملInteractions and regulation of molecular motors in Xenopus melanophores
Many cellular components are transported using a combination of the actin- and microtubule-based transport systems. However, how these two systems work together to allow well-regulated transport is not clearly understood. We investigate this question in the Xenopus melanophore model system, where three motors, kinesin II, cytoplasmic dynein, and myosin V, drive aggregation or dispersion of pigm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental cell
دوره 15 3 شماره
صفحات -
تاریخ انتشار 2008